1,141 research outputs found

    Worldwide Incidence of Malaria in 2009: Estimates, Time Trends, and a Critique of Methods

    Get PDF
    Richard Cibulskis and colleagues present estimates of the worldwide incidence of malaria in 2009, together with a critique of different estimation methods, including those based on risk maps constructed from surveys of parasite prevalence, and those based on routine case reports compiled by health ministries

    British container breeding mosquitoes: the impact of urbanisation and climate change on community composition and phenology

    Get PDF
    The proliferation of artificial container habitats in urban areas has benefitted urban adaptable mosquito species globally. In areas where mosquitoes transmit viruses and parasites, it can promote vector population productivity and fuel mosquito-borne disease outbreaks. In Britain, storage of water in garden water butts is increasing, potentially expanding mosquito larval habitats and influencing population dynamics and mosquito-human contact. Here we show that the community composition, abundance and phenology of mosquitoes breeding in experimental water butt containers were influenced by urbanisation. Mosquitoes in urban containers were less species-rich but present in significantly higher densities (100.4±21.3) per container than those in rural containers (77.7±15.1). Urban containers were dominated by Culex pipiens (a potential vector of West Nile Virus [WNV]) and appear to be increasingly exploited by Anopheles plumbeus (a human-biting potential WNV and malaria vector). Culex phenology was influenced by urban land use type, with peaks in larval abundances occurring earlier in urban than rural containers. Among other factors, this was associated with an urban heat island effect which raised urban air and water temperatures by 0.9°C and 1.2°C respectively. Further increases in domestic water storage, particularly in urban areas, in combination with climate changes will likely alter mosquito population dynamics in the UK

    Mosquito Abundance, Bed net Coverage and Other Factors Associated with Variations in Sporozoite Infectivity Rates in Four Villages of Rural Tanzania.

    Get PDF
    Entomological surveys are of great importance in decision-making processes regarding malaria control strategies because they help to identify associations between vector abundance both species-specific ecology and disease intervention factors associated with malaria transmission. Sporozoite infectivity rates, mosquito host blood meal source, bed net coverage and mosquito abundance were assessed in this study. A longitudinal survey was conducted in four villages in two regions of Tanzania. Malaria vectors were sampled using the CDC light trap and pyrethrum spray catch methods. In each village, ten paired houses were selected for mosquitoes sampling. Sampling was done in fortnight case and study was undertaken for six months in both Kilimanjaro (Northern Tanzania) and Dodoma (Central Tanzania) regions. A total of 6,883 mosquitoes were collected including: 5,628 (81.8%) Anopheles arabiensis, 1,100 (15.9%) Culex quinquefasciatus, 89 (1.4%) Anopheles funestus, and 66 (0.9%) Anopheles gambiae s.s. Of the total mosquitoes collected 3,861 were captured by CDC light trap and 3,022 by the pyrethrum spray catch method. The overall light trap: spray catch ratio was 1.3:1. Mosquito densities per room were 96.5 and 75.5 for light trap and pyrethrum spray catch respectively. Mosquito infectivity rates between villages that have high proportion of bed net owners and those without bed nets was significant (P < 0.001) and there was a significant difference in sporozoite rates between households with and without bed nets in these four villages (P < 0.001). Malaria remains a major problem in the study areas characterized as low transmission sites. Further studies are required to establish the annual entomological inoculation rates and to observe the annual parasitaemia dynamics in these communities. Outdoor mosquitoes collection should also be considered

    Model variations in predicting incidence of Plasmodium falciparum malaria using 1998-2007 morbidity and meteorological data from south Ethiopia

    Get PDF
    Background: Malaria transmission is complex and is believed to be associated with local climate changes. However, simple attempts to extrapolate malaria incidence rates from averaged regional meteorological conditions have proven unsuccessful. Therefore, the objective of this study was to determine if variations in specific meteorological factors are able to consistently predict P. falciparum malaria incidence at different locations in south Ethiopia. Methods: Retrospective data from 42 locations were collected including P. falciparum malaria incidence for the period of 1998-2007 and meteorological variables such as monthly rainfall (all locations), temperature (17 locations), and relative humidity (three locations). Thirty-five data sets qualified for the analysis. Ljung-Box Q statistics was used for model diagnosis, and R squared or stationary R squared was taken as goodness of fit measure. Time series modelling was carried out using Transfer Function (TF) models and univariate auto-regressive integrated moving average (ARIMA) when there was no significant predictor meteorological variable. Results: Of 35 models, five were discarded because of the significant value of Ljung-Box Q statistics. Past P. falciparum malaria incidence alone (17 locations) or when coupled with meteorological variables (four locations) was able to predict P. falciparum malaria incidence within statistical significance. All seasonal AIRMA orders were from locations at altitudes above 1742 m. Monthly rainfall, minimum and maximum temperature was able to predict incidence at four, five and two locations, respectively. In contrast, relative humidity was not able to predict P. falciparum malaria incidence. The R squared values for the models ranged from 16% to 97%, with the exception of one model which had a negative value. Models with seasonal ARIMA orders were found to perform better. However, the models for predicting P. falciparum malaria incidence varied from location to location, and among lagged effects, data transformation forms, ARIMA and TF orders. Conclusions: This study describes P. falciparum malaria incidence models linked with meteorological data. Variability in the models was principally attributed to regional differences, and a single model was not found that fits all locations. Past P. falciparum malaria incidence appeared to be a superior predictor than meteorology. Future efforts in malaria modelling may benefit from inclusion of non-meteorological factors

    Optimal management of adults with pharyngitis – a multi-criteria decision analysis

    Get PDF
    BACKGROUND: Current practice guidelines offer different management recommendations for adults presenting with a sore throat. The key issue is the extent to which the clinical likelihood of a Group A streptococcal infection should affect patient management decisions. To help resolve this issue, we conducted a multi-criteria decision analysis using the Analytic Hierarchy Process. METHODS: We defined optimal patient management using four criteria: 1) reduce symptom duration; 2) prevent infectious complications, local and systemic; 3) minimize antibiotic side effects, minor and anaphylaxis; and 4) achieve prudent use of antibiotics, avoiding both over-use and under-use. In our baseline analysis we assumed that all criteria and sub-criteria were equally important except minimizing anaphylactic side effects, which was judged very strongly more important than minimizing minor side effects. Management strategies included: a) No test, No treatment; b) Perform a rapid strep test and treat if positive; c) Perform a throat culture and treat if positive; d) Perform a rapid strep test and treat if positive; if negative obtain a throat culture and treat if positive; and e) treat without further tests. We defined four scenarios based on the likelihood of group A streptococcal infection using the Centor score, a well-validated clinical index. Published data were used to estimate the likelihoods of clinical outcomes and the test operating characteristics of the rapid strep test and throat culture for identifying group A streptococcal infections. RESULTS: Using the baseline assumptions, no testing and no treatment is preferred for patients with Centor scores of 1; two strategies – culture and treat if positive and rapid strep with culture of negative results – are equally preferable for patients with Centor scores of 2; and rapid strep with culture of negative results is the best management strategy for patients with Centor scores 3 or 4. These results are sensitive to the priorities assigned to the decision criteria, especially avoiding over-use versus under-use of antibiotics, and the population prevalence of Group A streptococcal pharyngitis. CONCLUSION: The optimal clinical management of adults with sore throat depends on both the clinical probability of a group A streptococcal infection and clinical judgments that incorporate individual patient and practice circumstances

    Estimating the Global Clinical Burden of Plasmodium falciparum Malaria in 2007

    Get PDF
    Simon Hay and colleagues derive contemporary estimates of the global clinical burden of Plasmodium falciparum malaria (the deadliest form of malaria) using cartography-based techniques

    Effect of meteorological factors on clinical malaria risk among children: an assessment using village-based meteorological stations and community-based parasitological survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Temperature, rainfall and humidity have been widely associated with the dynamics of malaria vector population and, therefore, with spread of the disease. However, at the local scale, there is a lack of a systematic quantification of the effect of these factors on malaria transmission. Further, most attempts to quantify this effect are based on proxy meteorological data acquired from satellites or interpolated from a different scale. This has led to controversies about the contribution of climate change to malaria transmission risk among others. Our study addresses the original question of relating meteorological factors measured at the local scale with malaria infection, using data collected at the same time and scale.</p> <p>Methods</p> <p>676 children (6–59 months) were selected randomly from three ecologically different sites (urban and rural). During weekly home visits between December 1, 2003, and November 30, 2004, fieldworkers tested children with fever for clinical malaria. They also collected data on possible confounders monthly. Digital meteorological stations measured ambient temperature, humidity, and rainfall in each site. Logistic regression was used to estimate the risk of clinical malaria given the previous month's meteorological conditions.</p> <p>Results</p> <p>The overall incidence of clinical malaria over the study period was 1.07 episodes per child. Meteorological factors were associated with clinical malaria with mean temperature having the largest effect.</p> <p>Conclusion</p> <p>Temperature was the best predictor for clinical malaria among children under five. A systematic measurement of local temperature through ground stations and integration of such data in the routine health information system could support assessment of malaria transmission risk at the district level for well-targeted control efforts.</p

    A blind accuracy assessment of computer-modeled forensic facial reconstruction using computed tomography data from live subjects.

    Get PDF
    A computer modeling system for facial reconstruction has been developed that employs a touch-based application to create anatomically accurate facial models focusing on skeletal detail. This article discusses the advantages and disadvantages of the system and illustrates its accuracy and reliability with a blind study using computed tomography (CT) data of living individuals. Three-dimensional models of the skulls of two white North American adults (one male, one female) were imported into the computer system. Facial reconstructions were produced by two practitioners following the Manchester method. Two posters were produced, each including a face pool of five surface model images and the facial reconstruction. The face pool related to the sex, age, and ethnic group of the target individual and included the surface model image of the target individual. Fifty-two volunteers were asked to choose the face from the face pool that most resembled each reconstruction. Both reconstructions received majority percentage hit rates that were at least 50% greater than any other face in the pool. The combined percentage hit rate was 50% above chance (70%). A quantitative comparison of the facial morphology between the facial reconstructions and the CT scan models of the subjects was carried out using Rapidform(â„¢) 2004 PP2-RF4. The majority of the surfaces of the facial reconstructions showed less than 2.5 mm error and 90% of the male face and 75% of the female face showed less than 5 mm error. Many of the differences between the facial reconstructions and the facial scans were probably the result of positional effects caused during the CT scanning procedure, especially on the female subject who had a fatter face than the male subject. The areas of most facial reconstruction error were at the ears and nasal tip
    • …
    corecore